Trajectories under a Vectorial Potential on Stationary Manifolds

نویسنده

  • ROSSELLA BARTOLO
چکیده

By using variational methods, we study the existence and multiplicity of trajec-tories under a vectorial potential on (standard) stationary Lorentzian manifolds possibly with boundary. 1. Introduction and statement of the results. The pair (ᏸ,g) is called Lorentzian manifold if ᏸ is a connected finite-dimensional smooth manifold with dim ᏸ ≥ 2 and g is a Lorentzian metric on ᏸ, that is, g is a smooth symmetric two covariant tensor field such that for any z ∈ ᏸ, the bilinear form g(z)[·, ·] induced on T z ᏸ is nondegenerate and of index ν(g) = 1. Its points are called events. A Lorentzian manifold (ᏸ,g) is called (standard) stationary if ᏸ is a product manifold

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic trajectories on stationary Lorentzian manifolds

In this paper we present an existence and multiplicity result for periodic trajectories on stationary Lorentzian manifolds, possibly with boundary, whose proof is based on a Morse theory approach, see [5]. We recall that a Lorentzian manifold is a smooth connected nite-dimensional manifold M equipped with a (0; 2) tensor eld g such that for any z ∈ M g(z) [·; ·] is a nondegenerate symmetric bil...

متن کامل

The stable manifold theorem for non-linear stochastic systems with memory II. The local stable manifold theorem

We state and prove a Local Stable Manifold Theorem (Theorem 4.1) for non-linear stochastic differential systems with finite memory (viz. stochastic functional differential equations (sfde’s)). We introduce the notion of hyperbolicity for stationary trajectories of sfde’s. We then establish the existence of smooth stable and unstable manifolds in a neighborhood of a hyperbolic stationary traject...

متن کامل

The Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations Ii: Existence of Stable and Unstable Manifolds

This article is a sequel to [M.Z.Z.1] aimed at completing the characterization of the pathwise local structure of solutions of semi-linear stochastic evolution equations (see’s) and stochastic partial differential equations (spde’s) near stationary solutions. The characterization is expressed in terms of the almost sure long-time behavior of trajectories of the equation in relation to the stati...

متن کامل

AN APPLICATION OF TRAJECTORIES AMBIGUITY IN TWO-STATE MARKOV CHAIN

In this paper, the ambiguity of nite state irreducible Markov chain trajectories is reminded and is obtained for two state Markov chain. I give an applicable example of this concept in President election

متن کامل

The Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations∗

The main objective of this paper is to characterize the pathwise local structure of solutions of semilinear stochastic evolution equations (see’s) and stochastic partial differential equations (spde’s) near stationary solutions. Such characterization is realized through the long-term behavior of the solution field near stationary points. The analysis falls in two parts 1, 2. In Part 1, we prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001